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High-order Čerenkov laser gain
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Čerenkov free-electron lasers have primarily operated on the fundamental guided mode of the dielectric
waveguide. Higher-order generation would allow short wavelength emission in a relatively large scale resona-
tor. In comparison to the fundamental mode, we find that gain on higher-order modes can be significant in a
planar geometry. This analysis is presented with a discussion of practical limits.
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I. INTRODUCTION

Although there exists a number of light sources that
capable of producing electromagnetic radiation over a w
range of frequencies, there remains a gap in coverage in
far-infrared~FIR! spectral range. The Cˇ erenkov free-electron
laser~CFEL! is an interesting candidate for a tunable sou
of short wavelength radiation that shows ability to fill th
chasm in the spectrum. The CFEL has been investigated
experimentally @1,2# and theoretically@3–6#, but little is
known about the interaction of the electron beam w
higher-order modes. The majority of the theoretical pap
published up to this point have focused on the propertie
the fundamental guided mode. One exception is w
Shiozawa and Kondo who published a paper on mode an
sis and broadly concluded that the spatial gain is reduced
higher orders@4,5#. The purpose of this paper is to detail an
examine the spatial gain on higher-order modes and con
of the beam-dielectric gap that would allow for the produ
tion of far-infrared radiation with significant growth.

II. DISPERSION RELATION

The CFEL is essentially a dielectric waveguide driven
an adjacent electron beam. The current induced by the s
guided Čerenkov mode generates a wave that grows ex
nentially. The mode wavelength is governed by the thickn
of the dielectric. In the FIR region, this thickness is of t
order of tens of microns, and so practical configurations
tail supporting the dielectric on a substrate, typically cond
tive.

We consider here a simple planar geometry as show
Fig. 1. The dielectric slab of strengthe is bounded below by
a semi-infinite, perfect metal ground plane. A finite vacuu
gap separates the dielectric slab and beam traveling par
to the slab and vacuum exists above the beam. The syste
symmetric in the transverseŷ direction.

The unperturbed electron beam is collimated and m
noenergetic, with velocityv5v ẑ, and fills the regiong,x
,g1a uniformly with number densityr. Electron motion is
confined to the forwardẑ direction by an effectively infinite
magnetic field. The beam therefore can be represented b
effective dielectric tensor derived from the linearized for
and charge conservation equations,

ebeam5 x̂x̂1 ŷŷ1e iẑẑ, ~1!
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where

e i512vp
2/g3~v2kzv !2, ~2!

the plasma frequency is defined byvp
254pre2/m, and g

51/A12b2 with b5v/c. Here,e andm refer to the electron
charge and mass, whilec is the speed of light.

The dispersion relation is developed from solutions
Maxwell’s equations for the electric~E! and magnetic~B!
fields, incorporating the beam-dielectric function above@Eq.
~1!#, and applying the appropriate boundary conditions at
four surfaces of the slab and beam. Given the rectilin
geometry, the fields can be conveniently decomposed
Fourier components. In each of the four distinct regions
dicated in Fig. 1, express the longitudinal field componen
the form

Ez j5~Aj
1eikx jx1Aj

2e2 ikx jx!e[ i (kzz2vt)] , ~3!

with region indexj ranging from one to four. We consider th
transverse-magnetic~TM! mode only, so thatBz50, and as-
sume forward propagation~field amplitudes independent o
y) for simplicity. By virtue of the diagonal anisotropy of th
beam tensor, the wave vector must satisfy the wave equa

kx
21e i~kz

22ev2!50, ~4!

where it is understood thate i51 outside the beam ande
51 outside the slab. The remaining field components
determined by the divergence and displacement current~D!
equations

FIG. 1. Geometry of the dielectric resonator. The widths of t
dielectric film, electron beam, and the gap between them are de
natedd, a, andg, respectively.
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]xEx j52 ikze iEz j , ~5!

kzBy j5~ev/c!Ex j . ~6!

By absorbing the electric current into the dielectric fun
tion, Ez andDx are continuous, particularly at each interfa
between regions. Note that the boundary condition forBy j is
redundant to that ofEx j . The condition that the electric field
must be zero within the perfectly conducting substr
forces, the tangential component of the electric field to v
ish at x50, andA1

252A1
1 . At x→`, the fields must re-

main finite. Since significant coupling occurs only when t
field phase velocity matches the electron speed (v'kzv, see
Fig. 2!, the field is evanescent above the beam. The condi
A4

250 eliminates the growing term. The resulting set of s
coupled linear equations can be reduced by Gaussian e
nation to yield the dispersion relationF50, where

F~v,kz ,vp!5c f 22 f 3, ~7!

with

c5
kx1tan~kx1d!

eqo
, ~8!

f 25S 11
1

c
tanh~qog!

11c tanh~qog!
D , ~9!

f 35S 11
1

Ae i
tanh~qa!

11Ae itanh~qa!
D . ~10!

FIG. 2. First three operating points~open circles! of the CFEL
determined by the intersection of the beam line~b537! ~heavy
dotted line! with the TM film modes~heavy solid lines!. The case
for intrinsic GaAs (e513.1) is shown.
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The wave numbers in the normal direction have been
fined in the dielectric, beam, and vacuum regions
kx15Aev2/c22kz

2, q5Ae i(kz
22v2/c2), and qo

5Akz
22v2/c2, respectively.

One parameter can be eliminated from the dispersion
lation by rendering the terms inF unitless. Given the slab
thicknessd is the only dimension in the absence of the bea
we normalize all lengths byd and frequencies byc/d. Then,
all results can be simply scaled for any value ofd.

For zero current (e i51), the familiar no-beam dispersio
F5c2150 is obtained and has been treated by many
thors @1,3,4,5#. The first three orders of the solution for th
case are plotted in dark, solid lines in Fig. 2. The limit whe
the beam fills the half space above the slab (g→0, a→`)
producesF5c21/Ae i.

III. ANALYTIC GAIN EXPRESSION

The dispersion relation is transcendental and so does
yield an exact analytic solution. In order to develop an e
pression for CFEL gain, we introduce an approximate te
nique that assumes an electron beam with infinite thickn
and low beam density (vp!v) so that the dispersion rela
tion can be Taylor expanded about the roots of the no-be
dispersion:

F'
]Fn

]v
~v2vn!1

]Fn

]kz
~kz2kzn!1

]Fn

]vp
2 ~vp

2!50,

~11!

where it is given thatF(vn ,kzn5vn /v,0)50 for the nth
order no-beam operating point and]Fn signifies the deriva-
tive evaluated at that point.

For purely spatial growth, the first term is neglected. T
last term can be evaluated by the chain rule to yield

]Fn

]vp
2

vp
25

]Fn

]e i

]e i

]vp
2

vp
252

]Fn

]e i

vp
2

g3

1

~v2kzv !2
. ~12!

The approximate dispersion relation therefore has a cu
form. This equation has three roots, one of which has a ne
tive imaginary component implying exponential growth. D
rivatives of the general case are intractable, but note thaF
is largely insensitive to electron beam thickness forqa@1.
The approximate spatial growth rate (a[2Im@k#) in the
wide beam limit (a→`) is then

an5
A3

2 S vp

gv DA
3

v

vp

]Fn

]kz

. ~13!

The temporal growth rate can be derived in a similar man
and is related to the spatial rate by Im@vn

approx#5anvg ,
where vg[A3 vvgn

2 is the effective group velocity andvgn

5(]Fn /]kz)/(]Fn /]v) is the group velocity of the no-
beam mode at thenth operating point.

The derivative]Fn /]kz , plotted for the first three order
in Fig. 3, is nearly proportional to 1/(b2b th), where b th
1-2
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51/Ae is the Čerenkov threshold velocity. Assuming con
stant total current, independent of the accelerating volta
thenvp

2 is inversely proportional tob. The velocity at peak
gain then satisfies

bpeak
3 12bpeak23b th50, ~14!

which has an approximate solution

bpeak'b th~32b th!/2. ~15!

This result yields slightly higher values than those calcula
numerically.

If no gap exists (g→0), the derivative]Fn /]kz is inde-
pendent of order forn.1, as shown in Fig. 3. Therefore, th
approximation suggests that the gain is constant for incr
ing mode order as long as the gap is negligible.

This result is counterintuitive. The thickness of the int
action region is determined by the evanescent length (q
}1/v). The number of electrons participating in the ga
process then shrinks with increasing frequency, assum
constant current density; and so one should expect gai
diminish for higher orders. This gain is constant for all o
ders in the face of the nearly universal rule that resona
efficiency drops as one moves to higher frequency.

IV. NUMERICAL RESULTS

The roots of the general dispersion equation~7! can be
found numerically and the parametric gain dependence s
ied. A plot of the first three spatial gain orders is given in F
4 with g50, a→`. From the plot, it is clear that, with zer
gap, the symmetry anticipated in the approximate form
holds generally. The shape of the gain curve is identical
each order and the peak gain value approach the asymp
limit at high order. Note again that the plasma frequency
constant and the number of participating electrons drops
versely with the order.

We computed both spatial and temporal gain and fou
that they are related by Im@vn#5anvg where the group ve-

FIG. 3. The derivativejn5]Fn /](kzd) calculated for GaAs
(e513.1) withg50 at operating points defined by beam veloci
The first three orders are shown.
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locity is the slope of the real part of the dispersion curv
Also, gain is insensitive to electron beam thickness until
beam becomes narrower than the evanescent lengthqa
,1), whereupon gain drops.

With a finite gap, the gain is exponentially dependent
the ratio of the gap to the evanescent length. Therefore,
gap is negligible when it is small compared to this leng
(qog!1). When viewing all orders together, the curve
peak gain is flat at low frequency and then rolls off as t
evanescent length shrinks below the gap as shown in Fig
The roll-off frequency is given, from the definition ofqo , by
the relation

vmaxg/gv'1. ~16!

Therefore, without considering practical limitations, th
maximum achievable frequency is primarily determined
the beam energy and gap size.

FIG. 4. Exact numerical spatial gain. The first three orders
shown withg50, a→`, b50.37, vpd/c50.0018, ande513.1.
The asymptotic peak value for high orders is indicated.

FIG. 5. Peak spatial gain with varying gap size andb50.37.
Both exact~solid dots! and approximate~open circles! results are
shown for the first three orders with fits to an exponential functi
Note that the approximate result produces a 40% weaker gap
pendence.
1-3
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V. PRACTICAL CONSIDERATIONS

The gain in a free-electron laser~FEL! is limited by the
quality of the driving electron beam. The primary charact
istics quantifying beam quality are the emittance and
depth of field. The emittance« is the product of the radius
and angular spread of the beam. It can be reduced but
eliminated by accelerating the beam, and so is typically n
malized to represent the quality of the source:«N5gb«. For
particularly dense beams, Coulomb repulsion increases
vergence and shortens the depth of field. The maximum
rent for an emittance limited beam of waist radiusr o is

I max5I A~gb!3«2/2r o
2 , ~17!

whereI A5mc3/e517 kA is the Alfvén current.
The depth of field is the axial range around the be

focus, over which its radius remains roughly constant and
determines the maximum interaction length of the CFE
Defining the depth of field, where the beam area doub
compared to the waist, the range is

L52gbr o
2/«N . ~18!

In order for the device to produce coherent radiation,
total gainaL must be greater than unity. Including the abo
constraints in the approximate formula, Eq.~13! produces
the inequality

A3e2gv/gvF 2gbr o
2

«N ]Fn~g50!/]kz
G1/3

>1. ~19!

The inclusion of the finite gap dependence is justified in F
5.

An experiment can be designed in either of the two wa
In one configuration, the required current can be minimiz
by tightly focusing the beam over the dielectric and exte
ing the resonator length to the full depth of fieldL. The finite
beam divergence angle limits the gap tog>r o/2 so that the
maximum frequency attainable by a CFEL in this configu
tion can be written, with Eq.~16!, simply as

nmax5
vmax

2p
'

0.2gbc

A«Nd ]Fn~g50!/]~kzd!
. ~20!
uid

ec
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Figure 2 implies thatvmax increases with shrinking dielectri
thickness and increasing beam energy, though the most c
pact device would operate at peak gain (b50.37 for GaAs!.
One version of the CFEL utilizes a scanning electron mic
scope generating a very high quality beam («N53
31028p mrad) at low energies. Choosing a dielectric thic
ness of 50mm, the smallest that can easily be machined, a
b50.37, the maximum frequency isnmax'4.8 THz. Note
that this result assumes single-pass operation. Resonant
finement by end mirrors effectively lengthens the interact
region and raisesvmax by the number of passes to 3/2 powe

In the second configuration, the gap can be reduced
using a resonator that is short as compared to the beam d
of field. This scheme also raises the maximum frequency,
requires much greater total current to achieve compara
gain. In practice, the beam focus can be adjusted to m
mize the operating frequency for the current available.

VI. CONCLUSION

In summary, both approximate and numerical results
dicate that when the beam-dielectric gap is small compa
to the evanescent length, the growth rate is independen
mode order, despite the higher frequency of the redu
number of participating electrons. The peak gain of ea
order drops as the field evanescent length shrinks below
gap size.

This conclusion is significant for maintaining that a na
row gap is a simpler task than squeezing the electron b
into a shrinking mode area. In addition, relatively large a
robust resonators can be employed with a sufficiently sm
gap to achieve high frequency operation.

For optimum beam coupling, the gain rolloff defines
maximum operating frequency that depends only on
quality of the driving electron beam and the dielect
strength and thickness. This result implies a practical CF
can operate as a coherent terahertz source.
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