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High-order Cerenkov laser gain
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Cerenkov free-electron lasers have primarily operated on the fundamental guided mode of the dielectric
waveguide. Higher-order generation would allow short wavelength emission in a relatively large scale resona-
tor. In comparison to the fundamental mode, we find that gain on higher-order modes can be significant in a
planar geometry. This analysis is presented with a discussion of practical limits.
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|. INTRODUCTION where
Although there exists a number of light sources that are €=1-wjl v} (w—kp)?, (2

capable of producing electromagnetic radiation over a wide
range of frequencies, there remains a gap in coverage in tHbe plasma frequency is defined b;%=47-rpe2/m, and y

far-infrared(FIR) spectral range. Thed®enkov free-electron =1/y1— B~ with =v/c. Here,eandmrefer to the electron
laser(CFEL) is an interesting candidate for a tunable sourcecharge and mass, whiteis the speed of light.

of short wavelength radiation that shows ability to fill this ~ The dispersion relation is developed from solutions of
chasm in the spectrum. The CFEL has been investigated botaxwell's equations for the electritE) and magnetiqB)
experimentally[1,2] and theoretically[3—6], but little is fields, incorporating the beam-dielectric function abgke.
known about the interaction of the electron beam with(1)], and applying the appropriate boundary conditions at the
higher-order modes. The majority of the theoretical paperdour surfaces of the slab and beam. Given the rectilinear
published up to this point have focused on the properties ogeometry, the fields can be conveniently decomposed into
the fundamental guided mode. One exception is withFourier components. In each of the four distinct regions in-
Shiozawa and Kondo who published a paper on mode anal)dica'[ed in Fig. 1, express the longitudinal field component in
sis and broadly concluded that the spatial gain is reduced offie form

higher order$4,5]. The purpose of this paper is to detail and , , ‘

examine the spatial gain on higher-order modes and control E,j= (A e®x*+ A e xi)elikez— et 3

of the beam-dielectric gap that would allow for the produc-

tion of far-infrared radiation with significant growth. with region index ranging from one to four. We consider the
transverse-magneti@M) mode only, so thaB,=0, and as-

Il. DISPERSION RELATION sume forward propagatioffield amplitudes independent of
y) for simplicity. By virtue of the diagonal anisotropy of the

The CFEL is essentially a dielectric waveguide driven bypeam tensor, the wave vector must satisfy the wave equation
an adjacent electron beam. The current induced by the slow,

guided @&renkov mode generates a wave that grows expo- k)2(+€“(k§_6w2):0’ (4
nentially. The mode wavelength is governed by the thickness

of the dielectric. In the FIR region, this thickness is of the\yhere it is understood thaﬁﬂzl outside the beam ane
order of tens of microns, and so practical configurations en=1 gutside the slab. The remaining field components are
tail supporting the dielectric on a substrate, typically conducyetermined by the divergence and displacement cur@nt

tive. . _ _equations
We consider here a simple planar geometry as shown in

Fig. 1. The dielectric slab of strengthis bounded below by .

a semi-infinite, perfect metal ground plane. A finite vacuum X
gap separates the dielectric slab and beam traveling parallel Vacuum .
to the slab and vacuum exists above the beam. The system is  —cademc oo m oo Y
symmetric in the transversedirection. '\' 3a Electron Beam y
The unperturbed electron beam is collimated and mo- ~ ~===~~~="~"~==~-~"~==-=-====---=—=--- -|',’
noenergetic, with velocity=vz, and fills the regiomy<x 28 Vacuum
<g+a uniformly with number density. Electron motion is S S o g g S
confined to the forward direction by an effectively infinite ! d. Dielectric >
magnetic field. The beam therefore can be represented by an yT Perfect Conductor z
effective dielectric tensor derived from the linearized force
and charge conservation equations, FIG. 1. Geometry of the dielectric resonator. The widths of the
o dielectric film, electron beam, and the gap between them are desig-
€peani= XX+ YY+ €22, (1) natedd, a, andg, respectively.

1063-651X/2003/6(B)/0366114)/$20.00 67 036611-1 ©2003 The American Physical Society



. OWENS AND J. BROWNELL

4r v Beam Line
acuum
Light line
Slope=1
3l

Dielectric
Light line

6
kd

z

8 10

FIG. 2. First three operating poinfspen circles of the CFEL
determined by the intersection of the beam lig@=37) (heavy
dotted ling with the TM film modes(heavy solid lines The case
for intrinsic GaAs €=13.1) is shown.

axExj:_ikZGHEZji (5)

kZByj:(E(J)/C)EXj . (6)

By absorbing the electric current into the dielectric func-
tion, E, andD, are continuous, particularly at each interface
between regions. Note that the boundary conditiorBgris
redundant to that oE,; . The condition that the electric field
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The wave numbers in the normal direction have been de-
fined in the dielectric, beam, and vacuum regions as
k= ew?cP—K2,  q= \/e”(kzz— w?/c?), and q,

= Jk2— w?/c?, respectively.

One parameter can be eliminated from the dispersion re-
lation by rendering the terms i® unitless. Given the slab
thicknesd is the only dimension in the absence of the beam,
we normalize all lengths bgt and frequencies bg/d. Then,
all results can be simply scaled for any valuedof

For zero current§=1), the familiar no-beam dispersion
®=4¢—1=0 is obtained and has been treated by many au-
thors[1,3,4,9. The first three orders of the solution for this
case are plotted in dark, solid lines in Fig. 2. The limit where
the beam fills the half space above the slgb-+0, a— x)
producesb = — 1/\/e.

III. ANALYTIC GAIN EXPRESSION

The dispersion relation is transcendental and so does not
yield an exact analytic solution. In order to develop an ex-
pression for CFEL gain, we introduce an approximate tech-
nigue that assumes an electron beam with infinite thickness
and low beam density«{,<w) so that the dispersion rela-
tion can be Taylor expanded about the roots of the no-beam
dispersion:

oD,

L Jw

I, b,
(0= oy + ﬁ_l(z(kz_ K, )+ m(wp)zo,

p
(11

where it is given thatb(w, ,k,,= w,/v,0)=0 for the nth
order no-beam operating point aad,, signifies the deriva-
tive evaluated at that point.

must be zero within the perfectly conducting substrate o el spatial growth, the first term is neglected. The

forces, the tangential component of the electric field to van
ish atx=0, andA; = —A] . At x—=, the fields must re-
main finite. Since significant coupling occurs only when the
field phase velocity matches the electron speedk,v, see

Fig. 2), the field is evanescent above the beam. The condition
A, =0 eliminates the growing term. The resulting set of six
coupled linear equations can be reduced by Gaussian elim

Tast term can be evaluated by the chain rule to yield

ab,

2
(9wp

2

@p

b, J€|

ﬁGH (7(0’2;

2_

@p

2
b, @p

I€| 3 (0—kp)?

(12

‘he approximate dispersion relation therefore has a cubic

nation to yield the dispersion relatich=0, where

orm. This equation has three roots, one of which has a nega-
tive imaginary component implying exponential growth. De-
rivatives of the general case are intractable, but notedhat

P(w.kz wp)= T2 15, ™ is largely insensitive to electron beam thicknessdas>1.
: The approximate spatial growth ratec —Im[k]) in the
with . o .
wide beam limit @— ) is then
kyqtan(kyqd
_xl r(xl), (8) \/§wp3
GQO an:7 — (13)
Yu
1
1+ —tanhq,9)
fo— 4 9) The temporal growth rate can be derived in a similar manner
2\ 1+ytanigeg)/ and is related to the spatial rate by [Wf™” = ey,
where vgfgx/vvgzn is the effective group velocity andg,
1 =(0P,/k,)I(0P,/Jdw) is the group velocity of the no-
1+ \/—_tanl“(qa) beam mode at thath operating point.
fa= _va (10) The derivativeod,/dk,, plotted for the first three orders
1+ etantga) in Fig. 3, is nearly proportional to 18— By), Where By,
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B FIG. 4. Exact numerical spatial gain. The first three orders are

FIG. 3. The derivativet,=a®,/d(k,d) calculated for GaAs Shown withg=0, a—, 8=0.37, w,d/c=0.0018, ande=13.1.
(e=13.1) withg=0 at operating points defined by beam velocity. The asymptotic peak value for high orders is indicated.

The fi h h . L . .
e first three orders are shown locity is the slope of the real part of the dispersion curve.

. v ) i Also, gain is insensitive to electron beam thickness until the
=1/Je is the Gerenkov threshold velocity. Assuming con- beam becomes narrower than the evanescent lermgth (
stant total current, independent of the accelerating voltage<1) whereupon gain drops.

then wp s inversely proportional t@. The velocity at peak With a finite gap, the gain is exponentially dependent on
gain then satisfies the ratio of the gap to the evanescent length. Therefore, the

3 gap is negligible when it is small compared to this length

Breat 2Bpeak= 3Pn=0, (14 (0o,9<<1). When viewing all orders together, the curve of

peak gain is flat at low frequency and then rolls off as the
evanescent length shrinks below the gap as shown in Fig. 5.
The roll-off frequency is given, from the definition qf,, by

which has an approximate solution

Bpeak% Bin(3— Bw)/2. (15 the relation
This result yields slightly higher values than those calculated wmad! yv=~1. (16)
numerically.
If no gap exists §—0), the derivativeg®,/dk, is inde- Therefore, without considering practical limitations, the

pendent of order fon>1, as shown in Fig. 3. Therefore, this maximum achievable frequency is primarily determined by
approximation suggests that the gain is constant for increaghe beam energy and gap size.
ing mode order as long as the gap is negligible.

This result is counterintuitive. The thickness of the inter-
action region is determined by the evanescent length (1/
«1/w). The number of electrons participating in the gain
process then shrinks with increasing frequency, assuming
constant current density; and so one should expect gain to
diminish for higher orders. This gain is constant for all or-
ders in the face of the nearly universal rule that resonator @
efficiency drops as one moves to higher frequency. %0.004_

(5]
A

—&— Exact
—o— Approx

Fit to e™®

0.0061 ———

ST 14287

IV. NUMERICAL RESULTS

The roots of the general dispersion equati@h can be 0.002-
found numerically and the parametric gain dependence stud-
ied. A plot of the first three spatial gain orders is given in Fig.
4 with g=0, a—o0. From the plot, it is clear that, with zero
gap, the symmetry anticipated in the approximate formula 0
holds generally. The shape of the gain curve is identical for 0 0.2 0.4 o/d 0.6 0.8 1
each order and the peak gain value approach the asymptotic

limit at high order. Note again that the plasma frequency iS F|G. 5. Peak spatial gain with varying gap size g8d0.37.
constant and the number of participating electrons drops inBoth exact(solid dotg and approximatéopen circle results are
versely with the order. shown for the first three orders with fits to an exponential function.

We computed both spatial and temporal gain and foundNote that the approximate result produces a 40% weaker gap de-
that they are related by [mw,]= a,vy Where the group ve- pendence.
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V. PRACTICAL CONSIDERATIONS Figure 2 implies thatv o increases with shrinking dielectric
thickness and increasing beam energy, though the most com-

The gain in a free-electron laséfEL) is limited by the pact device would operate at peak gag=0.37 for GaAs.

quality of the driving electron beam. The primary character- : fth ” ) | .
istics quantifying beam quality are the emittance and theOne version o t e CFEL ut |zEgﬁscan?lng electron micro-
depth of field. The emittance is the product of the radius Scope generating a very high quality beanzy{3

and angular spread of the beam. It can be reduced but r]0>210 7 mrad) at low energies. Choosing a dielectric thick

eliminated by accelerating the beam, and so is typically nor €SS 0f 50um, the smallest that can easily be machined, and

malized to represent the quality of the soureg= yBe. For 'Bh_tot.r?'z theltmaX|mum freq:;ta:ncy 'B‘“a"%‘tis T:Z' Notet i
particularly dense beams, Coulomb repulsion increases dj at this resutt assumes singie-pass operation. Resonant con
vergence and shortens the depth of field. The maximum cu

rent for an emittance limited beam of waist radngsis

_Tnement by end mirrors effectively lengthens the interaction

region and raise& ., by the number of passes to 3/2 power.
In the second configuration, the gap can be reduced by

I ma=a(yB)3e%/2r2, (17)  using aresonator that is short as compared to the beam depth
of field. This scheme also raises the maximum frequency, but
wherel ,=mc’/e=17 KA is the Alfven current. requires much greater total current to achieve comparable

The depth of field is the axial range around the beangain. In practice, the beam focus can be adjusted to maxi-
focus, over which its radius remains roughly constant and stize the operating frequency for the current available.
determines the maximum interaction length of the CFEL.

Defining the depth of field, where the beam area doubles
compared to the waist, the range is VI. CONCLUSION

L=2y,8r§/s,\,. (18) _ In summary, both approximate a}nd numerical results in-

dicate that when the beam-dielectric gap is small compared

In order for the device to produce coherent radiation, thd© the evanescent length, the growth rate is independent of
total gaineL must be greater than unity. Including the abovemode order, despite the higher frequency of the reduced
constraints in the approximate formula, E33) produces number of participating electrons. The peak gain of each

the inequality order drops as the field evanescent length shrinks below the
gap size.
} 27,8r(2) s This conclusion is significant for maintaining that a nar-
V3e 9w en 0D, (g=0)/dk, =1. (19 row gap is a simpler task than squeezing the electron beam

into a shrinking mode area. In addition, relatively large and
The inclusion of the finite gap dependence is justified in Figrobust resonators can be employed with a sufficiently small
5. gap to achieve high frequency operation.

An experiment can be designed in either of the two ways. For optimum beam coupling, the gain rolloff defines a
In one configuration, the required current can be minimizednaximum operating frequency that depends only on the
by tightly focusing the beam over the dielectric and extend-quality of the driving electron beam and the dielectric
ing the resonator length to the full depth of fieldThe finite  strength and thickness. This result implies a practical CFEL
beam divergence angle limits the gapger,/2 so that the can operate as a coherent terahertz source.
maximum frequency attainable by a CFEL in this configura-
tion can be written, with Eq(16), simply as
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